Day 14
Python in 30 Days: Day 14 -Higher Order Functions
In Python functions are treated as first-class citizens, allowing you to perform the following operations on functions:
- A function can take one or more functions as parameters
- A function can be returned as a result of another function
- A function can be modified
- A function can be assigned to a variable
In this section, we will cover:
- Handling functions as parameters
- Returning functions as return value from another function
- Using Python closures and decorators
Function as a Parameter
def sum_numbers(nums): # normal function
return sum(nums) # a sad function abusing the built-in sum function :<
def higher_order_function(f, lst): # function as a parameter
summation = f(lst)
return summation
result = higher_order_function(sum_numbers, [1, 2, 3, 4, 5])
print(result) # 15
Function as a Return Value
def square(x): # a square function
return x ** 2
def cube(x): # a cube function
return x ** 3
def absolute(x): # an absolute value function
if x >= 0:
return x
else:
return -(x)
def higher_order_function(type): # a higher order function returning a function
if type == 'square':
return square
elif type == 'cube':
return cube
elif type == 'absolute':
return absolute
result = higher_order_function('square')
print(result(3)) # 9
result = higher_order_function('cube')
print(result(3)) # 27
result = higher_order_function('absolute')
print(result(-3)) # 3
You can see from the above example that the higher-order function is returning different functions depending on the passed parameter
Python Closures
Python allows a nested function to access the outer scope of the enclosing function. This is known as a Closure. Let us have a look at how closures work in Python. In Python, closure is created by nesting a function inside another encapsulating function and then returning the inner function. See the example below.
Example:
def add_ten():
ten = 10
def add(num):
return num + ten
return add
closure_result = add_ten()
print(closure_result(5)) # 15
print(closure_result(10)) # 20
Python Decorators
A decorator is a design pattern in Python that allows a user to add new functionality to an existing object without modifying its structure. Decorators are usually called before the definition of a function you want to decorate.
Creating Decorators
To create a decorator function, we need an outer function with an inner wrapper function.
Example:
# Normal function
def greeting():
return 'Welcome to Python'
def uppercase_decorator(function):
def wrapper():
func = function()
make_uppercase = func.upper()
return make_uppercase
return wrapper
g = uppercase_decorator(greeting)
print(g()) # WELCOME TO PYTHON
## Let us implement the example above with a decorator
'''This decorator function is a higher order function
that takes a function as a parameter'''
def uppercase_decorator(function):
def wrapper():
func = function()
make_uppercase = func.upper()
return make_uppercase
return wrapper
@uppercase_decorator
def greeting():
return 'Welcome to Python'
print(greeting()) # WELCOME TO PYTHON
Applying Multiple Decorators to a Single Function
'''These decorator functions are higher order functions
that take functions as parameters'''
# First Decorator
def uppercase_decorator(function):
def wrapper():
func = function()
make_uppercase = func.upper()
return make_uppercase
return wrapper
# Second decorator
def split_string_decorator(function):
def wrapper():
func = function()
splitted_string = func.split()
return splitted_string
return wrapper
@split_string_decorator
@uppercase_decorator # order with decorators is important in this case - .upper() function does not work with lists
def greeting():
return 'Welcome to Python'
print(greeting()) # WELCOME TO PYTHON
Accepting Parameters in Decorator Functions
Most of the time we need our functions to take parameters, so we might need to define a decorator that accepts parameters.
def decorator_with_parameters(function):
def wrapper_accepting_parameters(para1, para2, para3):
function(para1, para2, para3)
print("I live in {}".format(para3))
return wrapper_accepting_parameters
@decorator_with_parameters
def print_full_name(first_name, last_name, country):
print("I am {} {}. I love to teach.".format(
first_name, last_name, country))
print_full_name("Asabeneh", "Yetayeh",'Finland')
Built-in Higher Order Functions
Some of the built-in higher-order functions that we cover in this part are map(), filter, and reduce. Lambda function can be passed as a parameter and the best use case of lambda functions is in functions like map, filter, and reduce.
Python – Map Function
The map() function is a built-in function that takes a function and iterable as parameters.
# syntax
map(function, iterable)
Example:1
numbers = [1, 2, 3, 4, 5] # iterable
def square(x):
return x ** 2
numbers_squared = map(square, numbers)
print(list(numbers_squared)) # [1, 4, 9, 16, 25]
# Lets apply it with a lambda function
numbers_squared = map(lambda x : x ** 2, numbers)
print(list(numbers_squared)) # [1, 4, 9, 16, 25]
Example:2
numbers_str = ['1', '2', '3', '4', '5'] # iterable
numbers_int = map(int, numbers_str)
print(list(numbers_int)) # [1, 2, 3, 4, 5]
Example:3
names = ['Tech', 'Lidiya', 'Ermias', 'Abraham'] # iterable
def change_to_upper(name):
return name.upper()
names_upper_cased = map(change_to_upper, names)
print(list(names_upper_cased)) # ['TECH', 'LIDIYA', 'ERMIAS', 'ABRAHAM']
# Let us apply it with a lambda function
names_upper_cased = map(lambda name: name.upper(), names)
print(list(names_upper_cased)) # ['TECH', 'LIDIYA', 'ERMIAS', 'ABRAHAM']
What a map does is iterate over a list. For instance, it changes the names to upper case and returns a new list.
Python – Filter Function
The filter() function calls the specified function which returns a boolean for each item of the specified iterable (list). It filters the items that satisfy the filtering criteria.
# syntax
filter(function, iterable)
Example:1
# Lets filter only even nubers
numbers = [1, 2, 3, 4, 5] # iterable
def is_even(num):
if num % 2 == 0:
return True
return False
even_numbers = filter(is_even, numbers)
print(list(even_numbers)) # [2, 4]
Example:2
numbers = [1, 2, 3, 4, 5] # iterable
def is_odd(num):
if num % 2 != 0:
return True
return False
odd_numbers = filter(is_odd, numbers)
print(list(odd_numbers)) # [1, 3, 5]
# Filter long name
names = ['Tech', 'Lidiya', 'Ermias', 'Abraham'] # iterable
def is_name_long(name):
if len(name) > 7:
return True
return False
long_names = filter(is_name_long, names)
print(list(long_names)) # ['Tech']
Python – Reduce Function
The reduce() function is defined in the functools module and we should import it from this module. Like a map and filter it takes two parameters, a function and an iterable. However, it does not return another iterable, instead, it returns a single value. Example:1
numbers_str = ['1', '2', '3', '4', '5'] # iterable
def add_two_nums(x, y):
return int(x) + int(y)
total = reduce(add_two_nums, numbers_str)
print(total) # 15
Exercises: Python in 30 Days: Day 14 -Higher Order Functions
countries = ['Estonia', 'Finland', 'Sweden', 'Denmark', 'Norway', 'Iceland']
names = ['Asabeneh', 'Lidiya', 'Ermias', 'Abraham']
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Exercises: Level 1
- Explain the difference between map, filter, and reduce.
- Explain the difference between higher-order function, closure, and decorator
- Define a call function before map, filter, or reduce, see examples.
- Use for loop to print each country in the countries list.
- Use for to print each name in the names list.
- Use for to print each number in the numbers list.
Exercises: Level 2
- Use the map to create a new list by changing each country to uppercase in the countries list
- Use a map to create a new list by changing each number to its square in the numbers list
- Use the map to change each name to uppercase in the names list
- Use the filter to filter out countries containing ‘land’.
- Use the filter to filter out countries having exactly six characters.
- Use a filter to filter out countries containing six letters or more in the country list.
- Use the filter to filter out countries starting with an ‘E’
- Chain two or more list iterators (eg. arr.map(callback).filter(callback).reduce(callback))
- Declare a function called get_string_lists which takes a list as a parameter and then returns a list containing only string items.
- Use reduce to sum all the numbers in the numbers list.
- Use reduce to concatenate all the countries and to produce this sentence: Estonia, Finland, Sweden, Denmark, Norway, and Iceland are northern European countries
- Declare a function called categorize_countries that returns a list of countries with some common pattern (you can find the countries list in this repository as countries.js(eg ‘land’, ‘ia’, ‘island’, ‘stan’)).
- Create a function returning a dictionary, where keys stand for starting letters of countries and values are the number of country names starting with that letter.
- Declare a get_first_ten_countries function – it returns a list of the first ten countries from the countries.js list in the data folder.
- Declare a get_last_ten_countries function that returns the last ten countries in the countries list.
<< Day 13 | Day 15>>