Pandas is an open-source, high-performance, easy-to-use data structure, and data analysis tool for the Python programming language. Pandas add data structures and tools designed to work with table-like data which is Series and Data Frames. Pandas provides tools for data manipulation:
For Mac:
pip install conda
conda install pandas
For Windows:
pip install conda
pip install pandas
Pandas data structure is based on Series and DataFrames.
A series is a column and a DataFrame is a multidimensional table made up of a collection of series. To create a pandas series we should use numpy to create a one-dimensional array or a python list. Let us see an example of a series:
Names Pandas Series
Countries Series
Cities Series
As you can see, pandas series is just one column of data. If we want to have multiple columns we use data frames. The example below shows pandas DataFrames.
Let us see, an example of a pandas data frame:
Data frame is a collection of rows and columns. Look at the table below; it has many more columns than the example above:
Next, we will see how to import pandas and how to create Series and DataFrames using pandas
import pandas as pd # importing pandas as pd
import numpy as np # importing numpy as np
nums = [1, 2, 3, 4,5]
s = pd.Series(nums)
print(s)
0 1
1 2
2 3
3 4
4 5
dtype: int64
nums = [1, 2, 3, 4, 5]
s = pd.Series(nums, index=[1, 2, 3, 4, 5])
print(s)
1 1
2 2
3 3
4 4
5 5
dtype: int64
fruits = ['Orange','Banana','Mango']
fruits = pd.Series(fruits, index=[1, 2, 3])
print(fruits)
1 Orange
2 Banana
3 Mango
dtype: object
dct = {'name':'Asabeneh','country':'Finland','city':'Helsinki'}
s = pd.Series(dct)
print(s)
name Asabeneh
country Finland
city Helsinki
dtype: object
s = pd.Series(10, index = [1, 2, 3])
print(s)
1 10
2 10
3 10
dtype: int64
s = pd.Series(np.linspace(5, 20, 10)) # linspace(starting, end, items)
print(s)
0 5.000000
1 6.666667
2 8.333333
3 10.000000
4 11.666667
5 13.333333
6 15.000000
7 16.666667
8 18.333333
9 20.000000
dtype: float64
Pandas data frames can be created in different ways.
data = [
['Asabeneh', 'Finland', 'Helsink'],
['David', 'UK', 'London'],
['John', 'Sweden', 'Stockholm']
]
df = pd.DataFrame(data, columns=['Names','Country','City'])
print(df)
Names | Country | City | |
---|---|---|---|
0 | Asabeneh | Finland | Helsink |
1 | David | UK | London |
2 | John | Sweden | Stockholm |
data = {'Name': ['Asabeneh', 'David', 'John'], 'Country':[
'Finland', 'UK', 'Sweden'], 'City': ['Helsiki', 'London', 'Stockholm']}
df = pd.DataFrame(data)
print(df)
Name | Country | City | |
---|---|---|---|
0 | Asabeneh | Finland | Helsiki |
1 | David | UK | London |
2 | John | Sweden | Stockholm |
data = [
{'Name': 'Asabeneh', 'Country': 'Finland', 'City': 'Helsinki'},
{'Name': 'David', 'Country': 'UK', 'City': 'London'},
{'Name': 'John', 'Country': 'Sweden', 'City': 'Stockholm'}]
df = pd.DataFrame(data)
print(df)
Name | Country | City | |
---|---|---|---|
0 | Asabeneh | Finland | Helsinki |
1 | David | UK | London |
2 | John | Sweden | Stockholm |
To download the CSV file, what is needed in this example, console/command line is enough:
curl -O https://raw.githubusercontent.com/Asabeneh/30-Days-Of-Python/master/data/weight-height.csv
Put the downloaded file in your working directory.
import pandas as pd
df = pd.read_csv('weight-height.csv')
print(df)
Let us read only the first 5 rows using head()
print(df.head()) # give five rows we can increase the number of rows by passing argument to the head() method
Gender | Height | Weight | |
---|---|---|---|
0 | Male | 73.847017 | 241.893563 |
1 | Male | 68.781904 | 162.310473 |
2 | Male | 74.110105 | 212.740856 |
3 | Male | 71.730978 | 220.042470 |
4 | Male | 69.881796 | 206.349801 |
Let us also explore the last recordings of the dataframe using the tail() methods.
print(df.tail()) # tails give the last five rows, we can increase the rows by passing argument to tail method
Gender | Height | Weight | |
---|---|---|---|
9995 | Female | 66.172652 | 136.777454 |
9996 | Female | 67.067155 | 170.867906 |
9997 | Female | 63.867992 | 128.475319 |
9998 | Female | 69.034243 | 163.852461 |
9999 | Female | 61.944246 | 113.649103 |
As you can see the csv file has three rows: Gender, Height and Weight. If the DataFrame would have a long rows, it would be hard to know all the columns. Therefore, we should use a method to know the colums. we do not know the number of rows. Let’s use shape meathod.
print(df.shape) # as you can see 10000 rows and three columns
(10000, 3)
Let us get all the columns using columns.
print(df.columns)
Index(['Gender', 'Height', 'Weight'], dtype='object')
Now, let us get a specific column using the column key
heights = df['Height'] # this is now a series
print(heights)
0 73.847017
1 68.781904
2 74.110105
3 71.730978
4 69.881796
...
9995 66.172652
9996 67.067155
9997 63.867992
9998 69.034243
9999 61.944246
Name: Height, Length: 10000, dtype: float64
weights = df['Weight'] # this is now a series
print(weights)
0 241.893563
1 162.310473
2 212.740856
3 220.042470
4 206.349801
...
9995 136.777454
9996 170.867906
9997 128.475319
9998 163.852461
9999 113.649103
Name: Weight, Length: 10000, dtype: float64
print(len(heights) == len(weights))
True
The describe() method provides a descriptive statistical values of a dataset.
print(heights.describe()) # give statisical information about height data
count 10000.000000
mean 66.367560
std 3.847528
min 54.263133
25% 63.505620
50% 66.318070
75% 69.174262
max 78.998742
Name: Height, dtype: float64
print(weights.describe())
count 10000.000000
mean 161.440357
std 32.108439
min 64.700127
25% 135.818051
50% 161.212928
75% 187.169525
max 269.989699
Name: Weight, dtype: float64
print(df.describe()) # describe can also give statistical information from a dataFrame
Height | Weight | |
---|---|---|
count | 10000.000000 | 10000.000000 |
mean | 66.367560 | 161.440357 |
std | 3.847528 | 32.108439 |
min | 54.263133 | 64.700127 |
25% | 63.505620 | 135.818051 |
50% | 66.318070 | 161.212928 |
75% | 69.174262 | 187.169525 |
max | 78.998742 | 269.989699 |
Similar to describe(), the info() method also give information about the dataset.
Modifying a DataFrame: * We can create a new DataFrame * We can create a new column and add it to the DataFrame, * we can remove an existing column from a DataFrame, * we can modify an existing column in a DataFrame, * we can change the data type of column values in the DataFrame
As always, first we import the necessary packages. Now, lets import pandas and numpy, two best friends ever.
import pandas as pd
import numpy as np
data = [
{"Name": "Asabeneh", "Country":"Finland","City":"Helsinki"},
{"Name": "David", "Country":"UK","City":"London"},
{"Name": "John", "Country":"Sweden","City":"Stockholm"}]
df = pd.DataFrame(data)
print(df)
Name | Country | City | |
---|---|---|---|
0 | Asabeneh | Finland | Helsinki |
1 | David | UK | London |
2 | John | Sweden | Stockholm |
Adding a column to a DataFrame is like adding a key to a dictionary.
First, let’s use the previous example to create a DataFrame. After we create the DataFrame, we will start modifying the columns and column values.
Let’s add a weight column in the DataFrame
weights = [74, 78, 69]
df['Weight'] = weights
df
Name | Country | City | Weight | |
---|---|---|---|---|
0 | Asabeneh | Finland | Helsinki | 74 |
1 | David | UK | London | 78 |
2 | John | Sweden | Stockholm | 69 |
Let’s add a height column into the DataFrame as well
heights = [173, 175, 169]
df['Height'] = heights
print(df)
Name | Country | City | Weight | Height | |
---|---|---|---|---|---|
0 | Asabeneh | Finland | Helsinki | 74 | 173 |
1 | David | UK | London | 78 | 175 |
2 | John | Sweden | Stockholm | 69 | 169 |
As you can see in the DataFrame above, we did add new columns, Weight and Height. Let’s add one additional column called BMI(Body Mass Index) by calculating their BMI using their mass and height. BMI is mass divided by height squared (in meters) – Weight/Height * Height.
As you can see, the height is in centimeters, so we should change it to meters. Let’s modify the height row.
df['Height'] = df['Height'] * 0.01
df
Name | Country | City | Weight | Height | |
---|---|---|---|---|---|
0 | Asabeneh | Finland | Helsinki | 74 | 1.73 |
1 | David | UK | London | 78 | 1.75 |
2 | John | Sweden | Stockholm | 69 | 1.69 |
# Using functions makes our code clean, but you can calculate the bmi without one
def calculate_bmi ():
weights = df['Weight']
heights = df['Height']
bmi = []
for w,h in zip(weights, heights):
b = w/(h*h)
bmi.append(b)
return bmi
bmi = calculate_bmi()
df['BMI'] = bmi
df
Name | Country | City | Weight | Height | BMI | |
---|---|---|---|---|---|---|
0 | Asabeneh | Finland | Helsinki | 74 | 1.73 | 24.725183 |
1 | David | UK | London | 78 | 1.75 | 25.469388 |
2 | John | Sweden | Stockholm | 69 | 1.69 | 24.158818 |
The BMI column values of the DataFrame are float with many significant digits after decimal. Let’s change it to one significant digit after the point.
df['BMI'] = round(df['BMI'], 1)
print(df)
Name | Country | City | Weight | Height | BMI | |
---|---|---|---|---|---|---|
0 | Asabeneh | Finland | Helsinki | 74 | 1.73 | 24.7 |
1 | David | UK | London | 78 | 1.75 | 25.5 |
2 | John | Sweden | Stockholm | 69 | 1.69 | 24.2 |
The information in the DataFrame seems not yet complete, let’s add birth year and current year columns.
birth_year = ['1769', '1985', '1990']
current_year = pd.Series(2020, index=[0, 1,2])
df['Birth Year'] = birth_year
df['Current Year'] = current_year
df
Name | Country | City | Weight | Height | BMI | Birth Year | Current Year | |
---|---|---|---|---|---|---|---|---|
0 | Asabeneh | Finland | Helsinki | 74 | 1.73 | 24.7 | 1769 | 2020 |
1 | David | UK | London | 78 | 1.75 | 25.5 | 1985 | 2020 |
2 | John | Sweden | Stockholm | 69 | 1.69 | 24.2 | 1990 | 2020 |
print(df.Weight.dtype)
dtype('int64')
df['Birth Year'].dtype # it gives string object , we should change this to number
df['Birth Year'] = df['Birth Year'].astype('int')
print(df['Birth Year'].dtype) # let's check the data type now
dtype('int32')
Now same for the current year:
df['Current Year'] = df['Current Year'].astype('int')
df['Current Year'].dtype
dtype('int32')
Now, the column values of birth year and current year are integers. We can calculate the age.
ages = df['Current Year'] - df['Birth Year']
ages
0 251
1 35
2 30
dtype: int32
df['Ages'] = ages
print(df)
Name | Country | City | Weight | Height | BMI | Birth Year | Current Year | Ages | |
---|---|---|---|---|---|---|---|---|---|
0 | Asabeneh | Finland | Helsinki | 74 | 1.73 | 24.7 | 1769 | 2019 | 250 |
1 | David | UK | London | 78 | 1.75 | 25.5 | 1985 | 2019 | 34 |
2 | John | Sweden | Stockholm | 69 | 1.69 | 24.2 | 1990 | 2019 | 29 |
The person in the first row lived so far for 251 years. It is unlikely for someone to live so long. Either it is a typo or the data is cooked. So let’s fill that data with the average of the columns without including outliers.
mean = (35 + 30)/ 2
mean = (35 + 30)/ 2
print('Mean: ',mean) #it is good to add some description to the output, so we know what is what
Mean: 32.5
print(df[df['Ages'] > 120])
Name | Country | City | Weight | Height | BMI | Birth Year | Current Year | Ages | |
---|---|---|---|---|---|---|---|---|---|
0 | Asabeneh | Finland | Helsinki | 74 | 1.73 | 24.7 | 1769 | 2020 | 251 |
print(df[df['Ages'] < 120])
Name | Country | City | Weight | Height | BMI | Birth Year | Current Year | Ages | |
---|---|---|---|---|---|---|---|---|---|
1 | David | UK | London | 78 | 1.75 | 25.5 | 1985 | 2020 | 35 |
2 | John | Sweden | Stockholm | 69 | 1.69 | 24.2 | 1990 | 2020 | 30 |
Day 30 Conclusions In the process of preparing this material, I have learned quite a…
Day 29: Building API In this section, we will cover a RESTful API that uses HTTP…
Day 28: Application Programming Interface (API) API API stands for Application Programming Interface. The kind…
Day 27: Python with MongoDB Python is a backend technology, and it can be connected…
Day 26: Python for Web Python is a general-purpose programming language, and it can be…
Day 24 - Python for Statistical Analysis Statistics Statistics is the discipline that studies the collection, organization, displaying, analysing, interpretation and presentation…